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Abstract —This paper presents a domain decomposition 

method (DDM) for time-stepped nonlinear finite element 

analysis (FEA) and its applications in electrical machines. This 

method, different from the classical Schwarz method, has no 

overlapping region between two sub-domains and, thus, does 

not require an iteration process to reach the accurate solution 

for linear problems. Due to the absence of the overlapping 

region, each sub-domain can belong to different physical 

domains, as an example, one being circuit sub-domain while 

others being FEA sub-domains. This feature not only makes it 

possible to support parallel computing, but also simplifies the 

formulation and implementation. Since the proposed DDM 

itself does not involve iteration, this method has no side effects 

on Newton-Raphson iteration in the case of nonlinear 

problems. The proposed DDM has been applied to transient 

FEA-circuit coupled problems and motion problems with the 

stationary and the rotating parts as separate sub-domains. 

I. INTRODUCTION 

Time-stepped finite element analysis (FEA) is a useful 

tool for the performance prediction of electrical machines. 

The major drawback of time-stepped FEA is computation 

time cost. A typical simulation of a single operating point 

may require the solution of thousands of time steps [1]. To 

accelerate the process of the time-stepped electromagnetic 

field computation, the domain decomposition method 

(DDM) has been used to accelerate the computation [1]-[6]. 

In [2], the Jacobian matrix is partitioned into linear and 

nonlinear blocks, thereby allowing the relatively rapid 

generation of an efficient multiplicative preconditioner for 

the conjugate gradient (CG) iteration. The multi-slice FEA 

[4] is used to consider the skew effects in induction 

machines; each slice is taken as a sub-domain and can be 

solved by parallel computing. Recently, the DDM is utilized 

in rotating machines with the stationary part and the rotating 

part taken as two sub-domains [6], and Krylov subspace 

iteration is used to speed up the simulation. 

The classical DDM decomposes the whole domain into 

several sub-domains with overlap regions between any two 

adjacent sub-domains [3], [5], [7]. The solution in the whole 

domain is reached by solving each sub-domain iteratively.  

This paper presents an alternative DDM without 

overlapping regions between two adjacent sub-domains. LU 

matrix factorizations are performed by parallel computing 

for the stiffness matrixes in all sub-domains, and unknowns 

on all interior boundaries and all sub-domains are computed 

successively. Due to the absence of the overlapping region, 

each sub-domain can belong to different physical domains, 

as an example, one being circuit sub-domain while others 

being FEA sub-domains. This feature simplifies the 

formulation and implementation. Since the proposed DDM 

itself does not involve iteration, this method has no side 

effects on Newton-Raphson (NR) iteration in the case of 

nonlinear problems. The proposed DDM has been applied 

to transient FEA-circuit coupled problems and motion 

problems with the stationary and the rotating parts as 

separate sub-domains.  

II. PRESENTED DOMAIN DECOMPOSITION METHOD 

In the presented DDM, the whole solution domain is 

decomposed into several sub-domains without overlapping 

regions, as shown in Fig. 1. 
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Fig. 1. DDM without overlapping regions 

In general, if the whole solution domain is divided into n 

sub-domains, then the equation in the whole domain is 
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where Γ denotes the set of all interior boundaries. The 

solution of (1) is 
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The solution sequence is first to solve (4) by parallel 

computing for each sub-domain; then to solve (2) for all 

interior boundaries; finally to obtain solutions of all sub-

domains by (3). For each sub-domain, (4) can be efficiently 

solved in one Gaussian Elimination with multiple right-hand 

side vectors [Yk AkΓ], or be solved with only one LU matrix 

factorization.  

Different from the classical DDM, the presented DDM 

solves the linear equation without iteration, and the solution 

is exactly the same as that directly from (1). Therefore, the 
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presented DDM has no side effects on NR iteration in 

nonlinear FEA. 

III. APPLICATIONS 

Since there are no overlapping regions in the presented 

DDM, the solution types, or some properties, in all sub-

domains can be different from each other. This feature 

simplifies the formulation in each sub-domain. Some typical 

applications are introduced below. 

A. FEA and Circuit Sub-Domains 

If FEA is coupled with controlling circuit, the whole 

coupled equation can be divided into two sub-domains: one 

for FEA and the other for circuit. The interior boundary 

between two sub-domains stands for all independent 

winding currents Iw. 

The symmetric FEA equation can be expressed as 
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where Vw, the vector for all independent winding terminal 

voltages, is a unknown vector. The circuit system equation 

can be written as 
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Cancelling right-hand side unknown vector Vw in (5) 

and (6), one obtains 
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which has the format of (1) and can be solved by the 

presented DDM. 

B. Linear and Nonlinear Sub-Domains 

If the whole solution domain is divided into a linear sub-

domain Ω1 and a nonlinear sub-domain Ω2, the equation as 

expressed in (1) is normally solved by the NR iteration.  

During the NR iteration, the stiffness matrix in the linear 

sub-domain keeps unchanged, thus only one LU matrix 

factorization is necessary. Further, if the linear sub-domain 

does not involve motion, the factorized LU matrixes can be 

recycled during the entire transient process, which makes 

the computation very efficient. 

C. Stand-Still and Rotating Sub-Domains 

If there is rotational motion in the solution domain, one 

can divide the whole domain into a stand-still sub-domain 

for the stator and a rotating sub-domain for the rotor with 

the interior boundary locating at the air-gap center. The 

field equation with sliding interface [6] has the format of 

(1), and therefore, the presented DDM is applicable.  

If both the stator and rotor involve nonlinear materials, 

one can divide the whole domain into four sub-domains: the 

linear and nonlinear sub-domains in both stator and rotor. In 

such a case, there is no motion in each linear sub-domain, 

and therefore, only one LU matrix factorization is necessary 

for the stiffness matrix in each linear sub-domain during the 

whole time-stepped simulation. 

There are more applications of the presented DDM in 

FEA of rotating electrical machines, such as the application 

in the multislice FEA for skewed induction motors [4]. 

IV. EXAMPLES 

The first example is for the application of the FEA and 

circuit sub-domains. A 900W, 24V, 136rpm, 3-phase, 22-

pole, 24-slot brushless dc motor with outer rotor structure is 

studied. The computed and measured stator phase currents 

are shown in Fig. 2 and Fig. 3, respectively. 

More examples will be provided in the full paper. 

 
Fig. 2 Computed phase current 

 
Fig. 3 Measured phase current 
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